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Abstract—We study the problem of key establishment for se-

cure many-to-many communications. The problem is inspired by 
the proliferation of large-scale distributed file systems supporting 
parallel access to multiple storage devices. Our work focuses on 
the current Internet standard for such file systems, i.e., parallel 

Network File System (pNFS), which makes use of Kerberos to 
establish parallel session keys between clients and storage 
devices. Our review of the existing Kerberos-based protocol 
shows that it has a number of limitations: (i) a metadata server 
facilitating key exchange between the clients and the storage 
devices has heavy workload that restricts the scalability of the 
protocol; (ii) the protocol does not provide forward secrecy; (iii) the 

metadata server generates itself all the session keys that are used 
between the clients and storage devices, and this inherently leads 
to key escrow. In this paper, we propose a variety of authenticated 

key exchange protocols that are designed to address the above 
issues. We show that our protocols are capable of reducing up to 
approximately 54% of the workload of the metadata server and 

concurrently supporting forward secrecy and escrow-freeness. All 
this requires only a small fraction of increased computation 
overhead at the client. 

 
 
 
 

 
Independent of the development of cluster and high-

performance computing, the emergence of clouds [5], [37] 

and the MapReduce programming model [13] has resulted 

in file systems such as the Hadoop Distributed File Sys-tem 

(HDFS) [26], Amazon S3 File System [6], and Cloud-Store  
[11]. This, in turn, has accelerated the wide-spread use of 

distributed and parallel computation on large datasets in 

many organizations. Some notable users of the HDFS 

include AOL, Apple, eBay, Facebook, Hewlett-Packard, 

IBM, LinkedIn, Twitter, and Yahoo! [23].  
In this work, we investigate the problem of secure many-to-

many communications in large-scale network file systems that 

support parallel access to multiple storage devices. That is, we 

consider a communication model where there are a large number 

of clients (potentially hundreds or thousands) accessing multiple 

remote and distributed storage devices (which also may scale up 

to hundreds or thousands) in parallel. Particularly, we focus on 

how to exchange key materials and establish parallel secure  
Keywords-Parallel sessions, authenticated key exchange, 

net-work file systems, forward secrecy, key escrow. 

 
I. INTRODUCTION 

 
In a parallel file system, file data is distributed across 

multiple storage devices or nodes to allow concurrent access 

by multiple tasks of a parallel application. This is typically used 

 
sessions between the clients and the storage devices in the 

parallel Network File System (pNFS) [46]—the current Internet 

standard—in an efficient and scalable manner. The development  
in large-scale cluster computing that focuses on high 

performance and reliable access to large datasets. That is, 

higher I/O bandwidth is achieved through concurrent access to 

multiple storage devices within large compute clusters; while 
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data loss is protected through data mirroring using fault-tolerant striping algorithms. Some examples of high-performance 

parallel file systems that are in production use are the IBM General Parallel File System (GPFS) [48], Google File System 

(GoogleFS) [21], Lustre [35], Parallel Virtual File System (PVFS) [43], and Panasas File System [53]; while there also exist 

research projects on distributed object storage systems such as Usra Minor [1], Ceph [52], XtreemFS [25], and Gfarm [50]. 

These are usually required for advanced scientific or data-intensive applications such as, seismic data processing, digital 

animation studios, computational fluid dy-namics, and semiconductor manufacturing. In these environ-ments, hundreds or 

thousands of file system clients share data and generate very high aggregate I/O load on the file system supporting petabyte- or 

terabyte-scale storage capacities. 
 

Our primary goal in this work is to design efficient and secure authenticated key exchange protocols that meet specific 

requirements of pNFS. Particularly, we attempt to meet the following desirable properties, which either have not been 

satisfactorily achieved or are not achievable by the current Kerberos-based solution (as described in Section II): 
 

• Scalability – the metadata server facilitating access re-quests from a client to multiple storage devices should bear as 

little workload as possible such that the server will not become a performance bottleneck, but is capable of supporting 

a very large number of clients; 
 

• Forward secrecy – the protocol should guarantee the security of past session keys when the long-term secret 

key of a client or a storage device is compromised [39]; and  

• Escrow-free – the metadata server should not learn any information about any session key used by the client 

and the storage device, provided there is no collusion among them. 
 

The main results of this paper are three new provably secure authenticated key exchange protocols. Our protocols, progressively 

designed to achieve each of the above properties, 

 
 
demonstrate the trade-offs between efficiency and security. 

We show that our protocols can reduce the workload of the 

metadata server by approximately half compared to the current 

Kerberos-based protocol, while achieving the desired security 

properties and keeping the computational overhead at the 

clients and the storage devices at a reasonably low level. We 

define an appropriate security model and prove that our 

protocols are secure in the model. 
 

In the next section, we provide some background on pNFS and 

describe its existing security mechanisms associated with secure 

communications between clients and distributed storage devices. 

Moreover, we identify the limitations of the cur-rent Kerberos-

based protocol in pNFS for establishing secure channels in 

parallel. In Section III, we describe the threat model for pNFS and 

the existing Kerberos-based protocol. In Section IV, we present 

our protocols that aim to address the current limitations. We then 

provide formal security analyses of our protocols under an 

appropriate security model, as well as performance evaluation in 

Sections VI and VII, respectively. In Section VIII, we describe 

related work, and finally in Section IX, we conclude and discuss 

some future work. 

 

II. INTERNET STANDARD — NFS 
 

Network File System (NFS) [46] is currently the sole file system 

standard supported by the Internet Engineering Task Force 

(IETF). The NFS protocol is a distributed file system protocol 

originally developed by Sun Microsystems that allows a user on a 

client computer, which may be diskless, to access files over 

networks in a manner similar to how local storage is accessed  
[47]. It is designed to be portable across different machines, 

operating systems, network architectures, and trans-port 

protocols. Such portability is achieved through the use of Remote 

Procedure Call (RPC) [51] primitives built on top of an eXternal 

Data Representation (XDR) [15]; with the former providing a 

procedure-oriented interface to remote services, while the latter 

providing a common way of representing a set of data types over a 

network. The NFS protocol has since then evolved into an open 

standard defined by the IETF Network Working Group [49], [9], 
 
[45]. Among the current key features are filesystem migration and 

replication, file locking, data caching, delegation (from server to 

client), and crash recovery. 
 

In recent years, NFS is typically used in environments 

where performance is a major factor, for example, high-

performance Linux clusters. The NFS version 4.1 (NFSv4.1)  
[46] protocol, the most recent version, provides a feature 

called parallel NFS (pNFS) that allows direct, concurrent client 

access to multiple storage devices to improve performance 

and scalability. As described in the NFSv4.1 specification: 

pNFS separates the file system protocol processing into 

two parts: metadata processing and data processing. Metadata is 

in-formation about a file system object, such as its name, location 

within the namespace, owner, permissions and other attributes. 

The entity that manages metadata is called a metadata server. 

On the other hand, regular files’ data is striped and stored 

across storage devices or servers. Data striping occurs in at 

least two ways: on a file-by-file basis and, within sufficiently 

large files, on a block-by-block basis. Unlike NFS, a read or 

write of data managed with pNFS is a direct operation between 

a client node and the storage system itself. Figure 1 illustrates 

the conceptual model of pNFS.  
 
 

 
pNFS protocol  

(metadata exchange) 
Clients 

(heterogeneous OSes) 
 

 

 
Storage access protocol  

(direct, parallel data exchange) 

 
Metadata server  

 
Control protocol  

(state synchronization) 

 
 

Storage devices or servers  
(file, block, object storage) 
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Fig. 1. The conceptual model of pNF
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C. Current Limitations 
 

The current design of NFS/pNFS focuses on interoperabil-ity, 

instead of efficiency and scalability, of various mechanisms to 

provide basic security. Moreover, key establishment be-tween a 

client and multiple storage devices in pNFS are based on those for 

NFS, that is, they are not designed specifically for parallel 

communications. Hence, the metadata server is not only 

responsible for processing access requests to storage de-vices 

(by granting valid layouts to authenticated and authorized clients), 

but also required to generate all the corresponding session keys 

that the client needs to communicate securely with the storage 

devices to which it has been granted access. Consequently, the 

metadata server may become a performance bottleneck for the file 

system. Moreover, such protocol design leads to key escrow. 

Hence, in principle, the server can learn all information transmitted 

between a client and a storage device. This, in turn, makes the 

server an attractive target for attackers. 
 

Another drawback of the current approach is that past session 

keys can be exposed if a storage device’s long-term key shared 

with the metadata server is compromised. We believe that this is a 

realistic threat since a large-scale file system may have thousands 

of geographically distributed storage devices. It may not be 

feasible to provide strong physical security and network protection 

for all the storage devices. 

 

III. PRELIMINARIES 
 
A. Notation 
 

We let M denote a metadata server, C denote a client, 
and S denote a storage device. Let entity X; Y 2 fM; C; 
 
Sg, we then use IDX to denote a unique identity of X,  
and KX to denote X’s secret (symmetric) key; while KXY 
denotes a secret key shared between X and Y , and sk 
denotes a session key.  

Moreover, we let E(K; m) be a standard (encryption only) 

symmetric key encryption function and let E(K; m) be an 

authenticated symmetric key encryption function, where 

both functions take as input a key K and a message m. 

Finally, we use t to represent a current time and to denote a 

layout. We may introduce other notation as required. 

 

B. Threat Assumptions 
 

Existing proposals [19], [40], [29], [30], [31] on secure large-

scale distributed file systems typically assume that both the 

metadata server and the storage device are trusted entities. 

On the other hand, no implicit trust is placed on the clients. 
 

The metadata server is trusted to act as a reference monitor, 

issue valid layouts containing access permissions, and some-

times even generate session keys (for example, in the case of 

Kerberos-based pNFS) for secure communication between the 

client and the storage devices. The storage devices are trusted to 

store data and only perform I/O operations upon authorized 

requests. However, we assume that the storage devices are at a 

much higher risk of being compromised compared to the metadata 

server, which is typically easier to monitor and protect in a 

centralized location. Furthermore, we assume that the storage 

devices may occasionally encounter hardware or 

 
 
software failure, causing the data stored on them no 
longer accessible.  

We note that this work focuses on communication security. 

Hence, we assume that data transmitted between the client 

and the metadata server, or between the client and the storage 

device can be easily eavesdropped, modified or deleted by an 

adversary. However, we do not address storage related 

security issues in this work. Security protection mechanisms 

for data at rest are orthogonal to our protocols. 

 

C. Kerberos-based pNFS Protocol 
 

For the sake of completeness, we describe the key establish-

ment protocol
4

 recommended for pNFS in RFC 5661 

between a client C and n storage devices Si, for 1 i n, through 
a metadata server M in Figure 2. We will compare the 
efficiency of the pNFS protocol against ours in Section VII.  

During the setup phase, we assume that M establishes a 
 
shared secret key KMSi  with each  Si. Here, KC is  a key  
derived from C’s password, that is also known by M; while T 
plays the role of a ticket-granting server (we simply assume 
that it is part of M). Also, prior to executing the protocol in 
Figure 2, we assume that C and M have already setup a 
secure channel through LIPKEY (as described in Section II-B).  

Once C has been authenticated by M and granted ac-cess to 

S1; : : : ; Sn, it receives a set of service tickets E(KMSi ; IDC ; t;  

ski), session keys sk i, and layouts
5

 i (for all i 2 [1; n]) from T , as 
illustrated in step (4) of the protocol. Clearly, we assume that C is 
 
able to uniquely extract each session key ski from 
 
E(KCT ; sk1; : : : ; skn). Since the session keys are generated by 

M and transported to Si through C, no interaction is required 
 
between C and Si (in terms of key exchange) in order to agree 
on a session key. This keeps the communication overhead 
between the client and each storage device to a minimum in 
comparison with the case where key exchange is required. 
Moreover, the computational overhead for the client and each 
storage device is very low since the protocol is mainly based 
on symmetric key encryption.  

The message in step (6) serves as key confirmation, 
 
that is to convince C that Si is in possession of the same 
session key that C uses. 

 

IV. OVERVIEW OF OUR PROTOCOLS 
 

We describe our design goals and give some intuition of a 

variety  of  pNFS  authenticated  key  exchange
6

 (pNFS-AKE)  
protocols that we consider in this work. In these protocols, we 

focus on parallel session key establishment between a client 
and n different storage devices through a metadata server. 

Nevertheless, they can be extended straightforwardly to the 
multi-user setting, i.e., many-to -many communications 

between clients and storage devices. 
 

4
For ease of exposition, we do not provide complete details of the 

protocol parameters. 
5

We assume that a layout (containing the client’s identity, file object  
mapping information, and access permissions) is typically integrity 
protected and it can be in the form of a signature or MAC. 

6
Without loss of generality, we use the term “key exchange” here,  

although key establishment between two parties can be based on 
either key transport or key agreement [39]. 
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(1) C ! M :  IDC 
 

(2) M ! C :  E(KC ; KCT ), E(KT ; IDC ; t; KCT )  
(3) C ! T :  IDS1 ; : : : ; IDSn , E(KT ; IDC ; t; KCT ), E(KCT ; IDC ; t)  
(4) T ! C :  1; : : : ; n, E(KMS1 ; IDC ; t; sk1); : : : ; E(KMSn ; IDC ; t; skn), E(KCT ; sk1; : : : ; skn)  
(5) C ! Si :  i; E(KMSi ; IDC ; t; ski), E(ski; IDC ; t)  

(6) Si ! C :  E(ski; t + 1)  
 
Fig. 2. A simplified version of the Kerberos-based pNFS protocol. 

 

 

A. Design Goals 
 

In our solutions, we focus on efficiency and scalability with 

respect to the metadata server. That is, our goal is to reduce 

the workload of the metadata server. On the other hand, the 

computational and communication overhead for both the client 

and the storage device should remain reasonably low. More 

importantly, we would like to meet all these goals while 

ensuring at least roughly similar security as that of the 

Kerberos-based protocol shown in Section III-C. In fact, we 

consider a stronger security model with forward secrecy for 

three of our protocols such that compromise of a long-term 
 

secret key of a client C or a storage device Si will not expose 
 

the associated past session keys shared between C and Si.  
Further, we would like an escrow-free solution, that is, the 
metadata server does not learn the session key shared 
between a client and a storage device, unless the server 
colludes with either one of them. 

 

B. Main Ideas 
 

Recall that in Kerberos-based pNFS, the metadata server is 
 

required to generate all service tickets E(KMSi ; IDC ; t; ski) 
 

and session keys ski between C and Si for all 1 i n, and thus  
placing heavy workload on the server. In our solu-tions, 
intuitively, C first pre-computes some key materials and 
forward them to M, which in return, issues the corresponding 
“authentication tokens” (or service tickets). C can then, when 

 
accessing  Si (for  all  i),  derive  session  keys  from  the  pre-  
computed key materials and present the corresponding 
authen-tication tokens. Note here, C is not required to compute 

the key materials before each access request to a storage 
device, but instead this is done at the beginning of a pre-
defined validity period v, which may be, for example, a day or 

week or month. For each request to access one or more 
storage devices at a specific time t, C then computes a 

session key from the pre-computed material. This way, the 
workload of generating session keys is amortized over v for all 

the clients within the file system. Our three variants of pNFS-
AKE protocols can be summarized as follows: 

 
• pNFS-AKE-I: Our first protocol can be regarded as a 

modified version of Kerberos that allows the client to 

generate its own session keys. That is, the key material 

used to derive a session key is pre-computed by the 

client for each v and forwarded to the corresponding 

storage device in the form of an authentication token at 

time t (within v). As with Kerberos, symmetric key 

encryption is used to protect the confidentiality of secret 

information used in the protocol. However, the 

protocol does not provide any forward secrecy. 

Further, the key 
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escrow issue persists here since the authentication tokens 
containing key materials for computing session keys are 
generated by the server.  

• pNFS-AKE-II: To address key escrow while achieving forward 

secrecy simultaneously, we incorporate a Diffie-Hellman key 

agreement technique into Kerberos-like pNFS- 

 

AKE-I. Particularly, the client C and the storage device Si 
 

each now chooses a secret value (that is known only to itself) and 

pre-computes a Diffie-Hellman key component. A session key is then 

generated from both the Diffie-Hellman components. Upon expiry of a 

time period v, the secret values and Diffie-Hellman key components 

are permanently 
 

erased,  such  that  in  the  event  when  either  C  or  Si  is 
 

compromised, the attacker will no longer have access to the key 

values required to compute past session keys. However, note that we 

achieve only partial forward secrecy (with respect to v), by trading 

efficiency over security. This implies that compromise of a long-term 

key can expose session keys 
 

generated within the current v. However, past session keys in 

previous (expired) time periods v
′
 (for v

′
 < v) will not be affected. 

 

• pNFS-AKE-III: Our third protocol aims to achieve full forward 

secrecy, that is, exposure of a long-term key affects only a 

current session key (with respect to t), but not all the other past 

session keys. We would also like to prevent key escrow. 

In a nutshell, we enhance pNFS-AKE-II with a key update 

technique based on any efficient one-way function, such 

as a keyed hash function. In 
 

Phase I, we require C and each Si to share some initial 
 

key material in the form of a Diffie-Hellman key. In Phase 
II, the initial shared key is then used to derive session 
keys in the form of a keyed hash chain. Since a hash 
value in the chain does not reveal information about its 
pre-image, the associated session key is forward secure. 

 

V. DESCRIPTION OF OUR PROTOCOLS 
 

We first introduce some notation required for our protocols. 

Let F (k; m) denote a secure key derivation function that takes 

as input a secret key k and some auxiliary information m, and 

outputs another key. Let sid denote a session identifier which 

can be used to uniquely name the ensuing session. Let also N 

be the total number of storage devices to which a client is 

allowed to access. We are now ready to describe the 

construction of our protocols. 

 

A. pNFS-AKE-I 
 

Our first pNFS-AKE protocol is illustrated in Figure 3. For 
each validity period v, C must first pre-compute a set of key 
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Phase I – For each validity period v:   
(1) C ! M :  IDC , E(KCM ; KCS1 ; : : : ; KCSN ) 

 
(2) M ! C : E(KMS1 ; IDC ; IDS1 ; v; KCS1 ); : : : ; E(KMSN ; IDC ; IDSN ; v; KCSN ) 

Phase II – For each access request at time t: 

(1) C ! M :  IDC , IDS1 ; : : : ; IDSn 
(2) M ! C : 1; : : : ; n 

(3) C ! Si :  i; E(K MSi ; IDC ; IDSi ; v; KCSi ), E(ski
0

; IDC ; t)  
(4) Si ! C :  E(ski

0
; t + 1)  

Fig. 3. Specification of pNFS-AKE-I. 

 

 

materials KCS1 ; : : : ; KCSN before it can access any of the N a secure MAC scheme that takes as input a secret key k 

storage device Si (for 1 i N). The key materials are transmitted to and a target message m, and output a MAC tag. Our 

partially forward secure protocol is specified in Figure 4. M.  We  assume  that  the  communication  between  C  and  M  is 
authenticated and protected through a secure chan-nel associated At the beginning of each v, each Si that is governed by 

with key  K established  using  the existing  methods  as M  generates a Diffie-Hellman key component g
si . The key 

 CM         

si 
    

described in Section II-B. M then issues an au-thentication token component g is forwarded to and stored by M. Similarly, C 

of the form E(KMSi ; IDC ; IDSi ; v; KCSi ) for each key material if generates its Diffie-Hellman key component g
c

 and sends it to 

the associated storage device Si has not been revoked.
7

 This M .
8

 At the end of Phase I, C receives all the key components 
completes Phase I of the protocol. From   corresponding  to  all  N  storage  devices  that  it  may  access 

this point onwards, any request from C to access Si is considered 

within time period v, and a set of authentication tokens of the 

form (K MSi ; ID C ; ID Si ; v; g
c

; g
si

 ). We note that for ease of 
part of Phase II of the protocol until v expires.      

When C submits an access request to M, the request 
exposition, we use the same key KMSi for encryption in step 

con-tains all the identities of storage devices Si for 1 i n N (1) and MAC in step (2). In actual implementation, however, 

that C wishes to access. For each Si, M issues a layout i. C then we assume that different keys are derived for encryption and 

MAC, respectively, with KMSi as the master key. For example, forwards the respective layouts, authentication tokens 

(from Phase I), and encrypted messages of the form E(ski
0

; the encryption key can be set to be F (KMSi ; “enc”), while the 
ID ; t) to all n storage devices.     MAC key can be set to be F (KMSi ; “mac”). 

C               

Upon receiving an I/O request for a file object from C, Steps (1) & (2) of Phase II are identical to those in the 

each Si performs the following:     previous variants. In step (3), C submits its Diffie-Hellman 

1) check if the layout i is valid;     component g
c

 in addition to other information required in step 
2) decrypt the authentication token and recover key KCSi ; (3) of pNFS-AKE-I. Si must verify the authentication token 

3) compute keys ski
z

 = F (KCSi ; IDC ; IDSi ; v; sid; z) to ensure the integrity of g
c

. Here C and Si compute ski
z 

 for z = 0; 1;     for z = 0; 1 as follow:   

4)  decrypt the  encrypted message,  check  if  IDC  ski
z

 = F (g
csi

 ; IDC ; IDSi ; g
c

; g
si

 ; v; sid; z): 
 matches  the  identity  of  C  and  if  t  is  within  the 

At the end of the protocol, C and Si share a session  current validity period v;     

5) if  all  previous  checks  pass,  Si 
0 

replies  C  with  a  key key ski
1

.       
 confirmation message using key ski . Note that since C distributes its chosen Diffie-Hellman value 
  

g
c

 during each protocol run (in Phase II), each Si needs to   1 
is set to be the session At the end of the protocol, ski  store  only  its  own  secret  value  si and  is  not  required  to 

       

key for securing communication between C and Si. We maintain a list of g
c

 values for different clients. 
note  that,  as  suggested  in [7],  sid  in  our  protocol  is 

Upon expiry of v, they erase their secret values c and si, respectively, from uniquely generated for each session at the application 
       their i nter nal st ates (or  me mo ry).  

layer, for example through the GSS-API.
 Clearly, M does not learn anything about skiz unless it 

 
B. pNFS-AKE-II 
 

We now employ a Diffie-Hellman key agreement 
technique to both provide forward secrecy and prevent key 
 
escrow. In this protocol, each Si is required to pre - 
distribute some key material to M at Phase I of the protocol. 

Let g
x

 2 G denote a Diffie-Hellman component, where G  
is an appropriate group generated by g, and x is a number 
randomly chosen by entity X 2 fC; Sg. Let (k; m) denote  

7
Here KMSi is regarded as a long-term symmetric secret key shared be-tween 

M and Si. Also, we use authenticated encryption instead of encryption only 
encryption for security reasons. This will be clear in our security analysis. 
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colludes with the associated C or Si, and thus achieving escrow-
freeness. 

 

C. pNFS-AKE-III 
 

As explained before, pNFS-AKE-II achieves only partial 

forward secrecy (with respect to v). In the third variant of 

our pNFS-AKE, therefore, we attempt to design a protocol  

8
For consistency with the existing design of the Kerberos protocol, 

we assume that the Diffie-Hellman components are “conveniently” 
transmitted through the already established secure channel between 
them, although the Diffie-Hellman components may not necessarily be 
encrypted from a security view point. 
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Node in order to gain access to HDFS data; while Block 

Access Tokens are used to secure communication between 

the Name Node and Data Nodes and to enforce HDFS 

filesystem permissions. On the other hand, the Job Token 

is used to secure communication between the MapReduce 

engine Task Tracker and individual tasks. Note that the 

RPC digest scheme uses symmetric encryption and 

depending upon the token type, the shared key may be 

distributed to hundreds or even thousands of hosts [41]. 

 

IX. CONCLUSIONS 

 
We proposed three authenticated key exchange 

protocols for parallel network file system (pNFS). Our 

protocols offer three appealing advantages over the 

existing Kerberos-based pNFS protocol. First, the metadata 

server executing our protocols has much lower workload 

than that of the Kerberos-based approach. Second, two our 

protocols provide forward secrecy: one is partially forward 

secure (with respect to multiple sessions within a time 

period), while the other is fully forward secure (with respect 

to a session). Third, we have designed a protocol which not 

only provides forward secrecy, but is also escrow-free. 
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