
© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 188

File Sharing Based on Authenticated Key Exchange

Protocol in Parallel Network

H Shyam Sundar

Assistant Professor
Department of CSE, VITS (N6), Karimnagar, JNTUH Hyderbad, TS, India

shyamhanmandla@gmail.com

N Sai Chander Reddy

B.Tech IV CSE Student, VITS (N6), Karimnagar, JNTUH Hyderbad, TS, India
saichanderreddy96@gmail.com

G Kavya

B.Tech IV CSE Student, VITS (N6), Karimnagar, JNTUH Hyderbad, TS, India
kavyagadila20@gmail.com

K Shruthi

B.Tech IV CSE Student, VITS (N6), Karimnagar, JNTUH Hyderbad, TS, India
kamreddyshruthi@gmail.com

Abstract—We study the problem of key establishment for se-

cure many-to-many communications. The problem is inspired by
the proliferation of large-scale distributed file systems supporting
parallel access to multiple storage devices. Our work focuses on
the current Internet standard for such file systems, i.e., parallel

Network File System (pNFS), which makes use of Kerberos to
establish parallel session keys between clients and storage
devices. Our review of the existing Kerberos-based protocol
shows that it has a number of limitations: (i) a metadata server
facilitating key exchange between the clients and the storage
devices has heavy workload that restricts the scalability of the
protocol; (ii) the protocol does not provide forward secrecy; (iii) the

metadata server generates itself all the session keys that are used
between the clients and storage devices, and this inherently leads
to key escrow. In this paper, we propose a variety of authenticated

key exchange protocols that are designed to address the above
issues. We show that our protocols are capable of reducing up to
approximately 54% of the workload of the metadata server and

concurrently supporting forward secrecy and escrow-freeness. All
this requires only a small fraction of increased computation
overhead at the client.

Independent of the development of cluster and high-

performance computing, the emergence of clouds [5], [37]

and the MapReduce programming model [13] has resulted

in file systems such as the Hadoop Distributed File Sys-tem

(HDFS) [26], Amazon S3 File System [6], and Cloud-Store
[11]. This, in turn, has accelerated the wide-spread use of

distributed and parallel computation on large datasets in

many organizations. Some notable users of the HDFS

include AOL, Apple, eBay, Facebook, Hewlett-Packard,

IBM, LinkedIn, Twitter, and Yahoo! [23].
In this work, we investigate the problem of secure many-to-

many communications in large-scale network file systems that

support parallel access to multiple storage devices. That is, we

consider a communication model where there are a large number

of clients (potentially hundreds or thousands) accessing multiple

remote and distributed storage devices (which also may scale up

to hundreds or thousands) in parallel. Particularly, we focus on

how to exchange key materials and establish parallel secure
Keywords-Parallel sessions, authenticated key exchange,

net-work file systems, forward secrecy, key escrow.

I. INTRODUCTION

In a parallel file system, file data is distributed across

multiple storage devices or nodes to allow concurrent access

by multiple tasks of a parallel application. This is typically used

sessions between the clients and the storage devices in the

parallel Network File System (pNFS) [46]—the current Internet

standard—in an efficient and scalable manner. The development
in large-scale cluster computing that focuses on high

performance and reliable access to large datasets. That is,

higher I/O bandwidth is achieved through concurrent access to

multiple storage devices within large compute clusters; while

http://www.jetir.org/
mailto:shyamhanmandla@gmail.com
mailto:saichanderreddy96@gmail.com
mailto:kavyagadila20@gmail.com
mailto:kamreddyshruthi@gmail.com

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 189

2

data loss is protected through data mirroring using fault-tolerant striping algorithms. Some examples of high-performance

parallel file systems that are in production use are the IBM General Parallel File System (GPFS) [48], Google File System

(GoogleFS) [21], Lustre [35], Parallel Virtual File System (PVFS) [43], and Panasas File System [53]; while there also exist

research projects on distributed object storage systems such as Usra Minor [1], Ceph [52], XtreemFS [25], and Gfarm [50].

These are usually required for advanced scientific or data-intensive applications such as, seismic data processing, digital

animation studios, computational fluid dy-namics, and semiconductor manufacturing. In these environ-ments, hundreds or

thousands of file system clients share data and generate very high aggregate I/O load on the file system supporting petabyte- or

terabyte-scale storage capacities.

Our primary goal in this work is to design efficient and secure authenticated key exchange protocols that meet specific

requirements of pNFS. Particularly, we attempt to meet the following desirable properties, which either have not been

satisfactorily achieved or are not achievable by the current Kerberos-based solution (as described in Section II):

• Scalability – the metadata server facilitating access re-quests from a client to multiple storage devices should bear as

little workload as possible such that the server will not become a performance bottleneck, but is capable of supporting

a very large number of clients;

• Forward secrecy – the protocol should guarantee the security of past session keys when the long-term secret

key of a client or a storage device is compromised [39]; and

• Escrow-free – the metadata server should not learn any information about any session key used by the client

and the storage device, provided there is no collusion among them.

The main results of this paper are three new provably secure authenticated key exchange protocols. Our protocols, progressively

designed to achieve each of the above properties,

demonstrate the trade-offs between efficiency and security.

We show that our protocols can reduce the workload of the

metadata server by approximately half compared to the current

Kerberos-based protocol, while achieving the desired security

properties and keeping the computational overhead at the

clients and the storage devices at a reasonably low level. We

define an appropriate security model and prove that our

protocols are secure in the model.

In the next section, we provide some background on pNFS and

describe its existing security mechanisms associated with secure

communications between clients and distributed storage devices.

Moreover, we identify the limitations of the cur-rent Kerberos-

based protocol in pNFS for establishing secure channels in

parallel. In Section III, we describe the threat model for pNFS and

the existing Kerberos-based protocol. In Section IV, we present

our protocols that aim to address the current limitations. We then

provide formal security analyses of our protocols under an

appropriate security model, as well as performance evaluation in

Sections VI and VII, respectively. In Section VIII, we describe

related work, and finally in Section IX, we conclude and discuss

some future work.

II. INTERNET STANDARD — NFS

Network File System (NFS) [46] is currently the sole file system

standard supported by the Internet Engineering Task Force

(IETF). The NFS protocol is a distributed file system protocol

originally developed by Sun Microsystems that allows a user on a

client computer, which may be diskless, to access files over

networks in a manner similar to how local storage is accessed
[47]. It is designed to be portable across different machines,

operating systems, network architectures, and trans-port

protocols. Such portability is achieved through the use of Remote

Procedure Call (RPC) [51] primitives built on top of an eXternal

Data Representation (XDR) [15]; with the former providing a

procedure-oriented interface to remote services, while the latter

providing a common way of representing a set of data types over a

network. The NFS protocol has since then evolved into an open

standard defined by the IETF Network Working Group [49], [9],

[45]. Among the current key features are filesystem migration and

replication, file locking, data caching, delegation (from server to

client), and crash recovery.

In recent years, NFS is typically used in environments

where performance is a major factor, for example, high-

performance Linux clusters. The NFS version 4.1 (NFSv4.1)
[46] protocol, the most recent version, provides a feature

called parallel NFS (pNFS) that allows direct, concurrent client

access to multiple storage devices to improve performance

and scalability. As described in the NFSv4.1 specification:

pNFS separates the file system protocol processing into

two parts: metadata processing and data processing. Metadata is

in-formation about a file system object, such as its name, location

within the namespace, owner, permissions and other attributes.

The entity that manages metadata is called a metadata server.

On the other hand, regular files’ data is striped and stored

across storage devices or servers. Data striping occurs in at

least two ways: on a file-by-file basis and, within sufficiently

large files, on a block-by-block basis. Unlike NFS, a read or

write of data managed with pNFS is a direct operation between

a client node and the storage system itself. Figure 1 illustrates

the conceptual model of pNFS.

pNFS protocol

(metadata exchange)
Clients

(heterogeneous OSes)

Storage access protocol

(direct, parallel data exchange)

Metadata server

Control protocol

(state synchronization)

Storage devices or servers
(file, block, object storage)

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 190

Fig. 1. The conceptual model of pNF

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 191

3

C. Current Limitations

The current design of NFS/pNFS focuses on interoperabil-ity,

instead of efficiency and scalability, of various mechanisms to

provide basic security. Moreover, key establishment be-tween a

client and multiple storage devices in pNFS are based on those for

NFS, that is, they are not designed specifically for parallel

communications. Hence, the metadata server is not only

responsible for processing access requests to storage de-vices

(by granting valid layouts to authenticated and authorized clients),

but also required to generate all the corresponding session keys

that the client needs to communicate securely with the storage

devices to which it has been granted access. Consequently, the

metadata server may become a performance bottleneck for the file

system. Moreover, such protocol design leads to key escrow.

Hence, in principle, the server can learn all information transmitted

between a client and a storage device. This, in turn, makes the

server an attractive target for attackers.

Another drawback of the current approach is that past session

keys can be exposed if a storage device’s long-term key shared

with the metadata server is compromised. We believe that this is a

realistic threat since a large-scale file system may have thousands

of geographically distributed storage devices. It may not be

feasible to provide strong physical security and network protection

for all the storage devices.

III. PRELIMINARIES

A. Notation

We let M denote a metadata server, C denote a client,
and S denote a storage device. Let entity X; Y 2 fM; C;

Sg, we then use IDX to denote a unique identity of X,
and KX to denote X’s secret (symmetric) key; while KXY
denotes a secret key shared between X and Y , and sk
denotes a session key.

Moreover, we let E(K; m) be a standard (encryption only)

symmetric key encryption function and let E(K; m) be an

authenticated symmetric key encryption function, where

both functions take as input a key K and a message m.

Finally, we use t to represent a current time and to denote a

layout. We may introduce other notation as required.

B. Threat Assumptions

Existing proposals [19], [40], [29], [30], [31] on secure large-

scale distributed file systems typically assume that both the

metadata server and the storage device are trusted entities.

On the other hand, no implicit trust is placed on the clients.

The metadata server is trusted to act as a reference monitor,

issue valid layouts containing access permissions, and some-

times even generate session keys (for example, in the case of

Kerberos-based pNFS) for secure communication between the

client and the storage devices. The storage devices are trusted to

store data and only perform I/O operations upon authorized

requests. However, we assume that the storage devices are at a

much higher risk of being compromised compared to the metadata

server, which is typically easier to monitor and protect in a

centralized location. Furthermore, we assume that the storage

devices may occasionally encounter hardware or

software failure, causing the data stored on them no
longer accessible.

We note that this work focuses on communication security.

Hence, we assume that data transmitted between the client

and the metadata server, or between the client and the storage

device can be easily eavesdropped, modified or deleted by an

adversary. However, we do not address storage related

security issues in this work. Security protection mechanisms

for data at rest are orthogonal to our protocols.

C. Kerberos-based pNFS Protocol

For the sake of completeness, we describe the key establish-

ment protocol
4

 recommended for pNFS in RFC 5661

between a client C and n storage devices Si, for 1 i n, through
a metadata server M in Figure 2. We will compare the
efficiency of the pNFS protocol against ours in Section VII.

During the setup phase, we assume that M establishes a

shared secret key KMSi with each Si. Here, KC is a key
derived from C’s password, that is also known by M; while T
plays the role of a ticket-granting server (we simply assume
that it is part of M). Also, prior to executing the protocol in
Figure 2, we assume that C and M have already setup a
secure channel through LIPKEY (as described in Section II-B).

Once C has been authenticated by M and granted ac-cess to

S1; : : : ; Sn, it receives a set of service tickets E(KMSi ; IDC ; t;

ski), session keys sk i, and layouts
5

 i (for all i 2 [1; n]) from T , as
illustrated in step (4) of the protocol. Clearly, we assume that C is

able to uniquely extract each session key ski from

E(KCT ; sk1; : : : ; skn). Since the session keys are generated by

M and transported to Si through C, no interaction is required

between C and Si (in terms of key exchange) in order to agree
on a session key. This keeps the communication overhead
between the client and each storage device to a minimum in
comparison with the case where key exchange is required.
Moreover, the computational overhead for the client and each
storage device is very low since the protocol is mainly based
on symmetric key encryption.

The message in step (6) serves as key confirmation,

that is to convince C that Si is in possession of the same
session key that C uses.

IV. OVERVIEW OF OUR PROTOCOLS

We describe our design goals and give some intuition of a

variety of pNFS authenticated key exchange
6

 (pNFS-AKE)
protocols that we consider in this work. In these protocols, we

focus on parallel session key establishment between a client
and n different storage devices through a metadata server.

Nevertheless, they can be extended straightforwardly to the
multi-user setting, i.e., many-to -many communications

between clients and storage devices.

4
For ease of exposition, we do not provide complete details of the

protocol parameters.
5

We assume that a layout (containing the client’s identity, file object
mapping information, and access permissions) is typically integrity
protected and it can be in the form of a signature or MAC.

6
Without loss of generality, we use the term “key exchange” here,

although key establishment between two parties can be based on
either key transport or key agreement [39].

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 192

4

(1) C ! M : IDC

(2) M ! C : E(KC ; KCT), E(KT ; IDC ; t; KCT)
(3) C ! T : IDS1 ; : : : ; IDSn , E(KT ; IDC ; t; KCT), E(KCT ; IDC ; t)
(4) T ! C : 1; : : : ; n, E(KMS1 ; IDC ; t; sk1); : : : ; E(KMSn ; IDC ; t; skn), E(KCT ; sk1; : : : ; skn)
(5) C ! Si : i; E(KMSi ; IDC ; t; ski), E(ski; IDC ; t)

(6) Si ! C : E(ski; t + 1)

Fig. 2. A simplified version of the Kerberos-based pNFS protocol.

A. Design Goals

In our solutions, we focus on efficiency and scalability with

respect to the metadata server. That is, our goal is to reduce

the workload of the metadata server. On the other hand, the

computational and communication overhead for both the client

and the storage device should remain reasonably low. More

importantly, we would like to meet all these goals while

ensuring at least roughly similar security as that of the

Kerberos-based protocol shown in Section III-C. In fact, we

consider a stronger security model with forward secrecy for

three of our protocols such that compromise of a long-term

secret key of a client C or a storage device Si will not expose

the associated past session keys shared between C and Si.
Further, we would like an escrow-free solution, that is, the
metadata server does not learn the session key shared
between a client and a storage device, unless the server
colludes with either one of them.

B. Main Ideas

Recall that in Kerberos-based pNFS, the metadata server is

required to generate all service tickets E(KMSi ; IDC ; t; ski)

and session keys ski between C and Si for all 1 i n, and thus
placing heavy workload on the server. In our solu-tions,
intuitively, C first pre-computes some key materials and
forward them to M, which in return, issues the corresponding
“authentication tokens” (or service tickets). C can then, when

accessing Si (for all i), derive session keys from the pre-
computed key materials and present the corresponding
authen-tication tokens. Note here, C is not required to compute

the key materials before each access request to a storage
device, but instead this is done at the beginning of a pre-
defined validity period v, which may be, for example, a day or

week or month. For each request to access one or more
storage devices at a specific time t, C then computes a

session key from the pre-computed material. This way, the
workload of generating session keys is amortized over v for all

the clients within the file system. Our three variants of pNFS-
AKE protocols can be summarized as follows:

• pNFS-AKE-I: Our first protocol can be regarded as a

modified version of Kerberos that allows the client to

generate its own session keys. That is, the key material

used to derive a session key is pre-computed by the

client for each v and forwarded to the corresponding

storage device in the form of an authentication token at

time t (within v). As with Kerberos, symmetric key

encryption is used to protect the confidentiality of secret

information used in the protocol. However, the

protocol does not provide any forward secrecy.

Further, the key

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 193

escrow issue persists here since the authentication tokens
containing key materials for computing session keys are
generated by the server.

• pNFS-AKE-II: To address key escrow while achieving forward

secrecy simultaneously, we incorporate a Diffie-Hellman key

agreement technique into Kerberos-like pNFS-

AKE-I. Particularly, the client C and the storage device Si

each now chooses a secret value (that is known only to itself) and

pre-computes a Diffie-Hellman key component. A session key is then

generated from both the Diffie-Hellman components. Upon expiry of a

time period v, the secret values and Diffie-Hellman key components

are permanently

erased, such that in the event when either C or Si is

compromised, the attacker will no longer have access to the key

values required to compute past session keys. However, note that we

achieve only partial forward secrecy (with respect to v), by trading

efficiency over security. This implies that compromise of a long-term

key can expose session keys

generated within the current v. However, past session keys in

previous (expired) time periods v
′
 (for v

′
 < v) will not be affected.

• pNFS-AKE-III: Our third protocol aims to achieve full forward

secrecy, that is, exposure of a long-term key affects only a

current session key (with respect to t), but not all the other past

session keys. We would also like to prevent key escrow.

In a nutshell, we enhance pNFS-AKE-II with a key update

technique based on any efficient one-way function, such

as a keyed hash function. In

Phase I, we require C and each Si to share some initial

key material in the form of a Diffie-Hellman key. In Phase
II, the initial shared key is then used to derive session
keys in the form of a keyed hash chain. Since a hash
value in the chain does not reveal information about its
pre-image, the associated session key is forward secure.

V. DESCRIPTION OF OUR PROTOCOLS

We first introduce some notation required for our protocols.

Let F (k; m) denote a secure key derivation function that takes

as input a secret key k and some auxiliary information m, and

outputs another key. Let sid denote a session identifier which

can be used to uniquely name the ensuing session. Let also N

be the total number of storage devices to which a client is

allowed to access. We are now ready to describe the

construction of our protocols.

A. pNFS-AKE-I

Our first pNFS-AKE protocol is illustrated in Figure 3. For
each validity period v, C must first pre-compute a set of key

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 194

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation
information: DOI 10.1109/TPDS.2015.2388447, IEEE Transactions on Parallel and Distributed Systems

5

Phase I – For each validity period v:
(1) C ! M : IDC , E(KCM ; KCS1 ; : : : ; KCSN)

(2) M ! C : E(KMS1 ; IDC ; IDS1 ; v; KCS1); : : : ; E(KMSN ; IDC ; IDSN ; v; KCSN)

Phase II – For each access request at time t:

(1) C ! M : IDC , IDS1 ; : : : ; IDSn
(2) M ! C : 1; : : : ; n

(3) C ! Si : i; E(K MSi ; IDC ; IDSi ; v; KCSi), E(ski
0

; IDC ; t)
(4) Si ! C : E(ski

0
; t + 1)

Fig. 3. Specification of pNFS-AKE-I.

materials KCS1 ; : : : ; KCSN before it can access any of the N a secure MAC scheme that takes as input a secret key k

storage device Si (for 1 i N). The key materials are transmitted to and a target message m, and output a MAC tag. Our

partially forward secure protocol is specified in Figure 4. M. We assume that the communication between C and M is
authenticated and protected through a secure chan-nel associated At the beginning of each v, each Si that is governed by

with key K established using the existing methods as M generates a Diffie-Hellman key component g
si . The key

 CM

si

described in Section II-B. M then issues an au-thentication token component g is forwarded to and stored by M. Similarly, C

of the form E(KMSi ; IDC ; IDSi ; v; KCSi) for each key material if generates its Diffie-Hellman key component g
c

 and sends it to

the associated storage device Si has not been revoked.
7

 This M .
8

 At the end of Phase I, C receives all the key components
completes Phase I of the protocol. From corresponding to all N storage devices that it may access

this point onwards, any request from C to access Si is considered

within time period v, and a set of authentication tokens of the

form (K MSi ; ID C ; ID Si ; v; g
c

; g
si

). We note that for ease of
part of Phase II of the protocol until v expires.

When C submits an access request to M, the request
exposition, we use the same key KMSi for encryption in step

con-tains all the identities of storage devices Si for 1 i n N (1) and MAC in step (2). In actual implementation, however,

that C wishes to access. For each Si, M issues a layout i. C then we assume that different keys are derived for encryption and

MAC, respectively, with KMSi as the master key. For example, forwards the respective layouts, authentication tokens

(from Phase I), and encrypted messages of the form E(ski
0

; the encryption key can be set to be F (KMSi ; “enc”), while the
ID ; t) to all n storage devices. MAC key can be set to be F (KMSi ; “mac”).

C

Upon receiving an I/O request for a file object from C, Steps (1) & (2) of Phase II are identical to those in the

each Si performs the following: previous variants. In step (3), C submits its Diffie-Hellman

1) check if the layout i is valid; component g
c

 in addition to other information required in step
2) decrypt the authentication token and recover key KCSi ; (3) of pNFS-AKE-I. Si must verify the authentication token

3) compute keys ski
z

 = F (KCSi ; IDC ; IDSi ; v; sid; z) to ensure the integrity of g
c

. Here C and Si compute ski
z

 for z = 0; 1; for z = 0; 1 as follow:

4) decrypt the encrypted message, check if IDC ski
z

 = F (g
csi

 ; IDC ; IDSi ; g
c

; g
si

 ; v; sid; z):
 matches the identity of C and if t is within the

At the end of the protocol, C and Si share a session current validity period v;

5) if all previous checks pass, Si
0

replies C with a key key ski
1

.
 confirmation message using key ski . Note that since C distributes its chosen Diffie-Hellman value

g
c

 during each protocol run (in Phase II), each Si needs to 1
is set to be the session At the end of the protocol, ski store only its own secret value si and is not required to

key for securing communication between C and Si. We maintain a list of g
c

 values for different clients.
note that, as suggested in [7], sid in our protocol is

Upon expiry of v, they erase their secret values c and si, respectively, from uniquely generated for each session at the application
 their i nter nal st ates (or me mo ry).

layer, for example through the GSS-API.
 Clearly, M does not learn anything about skiz unless it

B. pNFS-AKE-II

We now employ a Diffie-Hellman key agreement
technique to both provide forward secrecy and prevent key

escrow. In this protocol, each Si is required to pre -
distribute some key material to M at Phase I of the protocol.

Let g
x

 2 G denote a Diffie-Hellman component, where G
is an appropriate group generated by g, and x is a number
randomly chosen by entity X 2 fC; Sg. Let (k; m) denote

7
Here KMSi is regarded as a long-term symmetric secret key shared be-tween

M and Si. Also, we use authenticated encryption instead of encryption only
encryption for security reasons. This will be clear in our security analysis.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 195

colludes with the associated C or Si, and thus achieving escrow-
freeness.

C. pNFS-AKE-III

As explained before, pNFS-AKE-II achieves only partial

forward secrecy (with respect to v). In the third variant of

our pNFS-AKE, therefore, we attempt to design a protocol

8
For consistency with the existing design of the Kerberos protocol,

we assume that the Diffie-Hellman components are “conveniently”
transmitted through the already established secure channel between
them, although the Diffie-Hellman components may not necessarily be
encrypted from a security view point.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 196

6

Node in order to gain access to HDFS data; while Block

Access Tokens are used to secure communication between

the Name Node and Data Nodes and to enforce HDFS

filesystem permissions. On the other hand, the Job Token

is used to secure communication between the MapReduce

engine Task Tracker and individual tasks. Note that the

RPC digest scheme uses symmetric encryption and

depending upon the token type, the shared key may be

distributed to hundreds or even thousands of hosts [41].

IX. CONCLUSIONS

We proposed three authenticated key exchange

protocols for parallel network file system (pNFS). Our

protocols offer three appealing advantages over the

existing Kerberos-based pNFS protocol. First, the metadata

server executing our protocols has much lower workload

than that of the Kerberos-based approach. Second, two our

protocols provide forward secrecy: one is partially forward

secure (with respect to multiple sessions within a time

period), while the other is fully forward secure (with respect

to a session). Third, we have designed a protocol which not

only provides forward secrecy, but is also escrow-free.

ACKNOWLEDGEMENT

We are thankful to Liqun Chen and Kenny Paterson for

their helpful feedback on an earlier version of this paper.

REFERENCES

[1] M. Abd-El-Malek, W.V. Courtright II, C. Cranor, G.R. Ganger, J. Hen-

dricks, A.J. Klosterman, M.P. Mesnier, M. Prasad, B. Salmon, R.R.
Sam-basivan, S. Sinnamohideen, J.D. Strunk, E. Thereska, M.
Wachs, and J.J. Wylie. Ursa Minor: Versatile cluster-based storage. In

Proceedings of the 4th USENIX Conference on File and Storage
Technologies (FAST), pages 59–72. USENIX Association, Dec 2005.

[2] C. Adams. The simple public-key GSS-API mechanism (SPKM). The
Internet Engineering Task Force (IETF), RFC 2025, Oct 1996.

[3] A. Adya, W.J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J.R.
Douceur, J. Howell, J.R. Lorch, M. Theimer, and R. Wattenhofer.
FARSITE: Federated, available, and reliable storage for an
incompletely trusted environment. In Proceedings of the 5th
Symposium on Operating System Design and Implementation
(OSDI). USENIX Association, Dec 2002.

[4] M.K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. Oertli, D.G.
Andersen, M. Burrows, T. Mann, and C.A. Thekkath. Block-level
security for network-attached disks. In Proceedings of the 2nd
International Conference on File and Storage Technologies
(FAST). USENIX Association, Mar 2003.

[5] M. Armbrust, A. Fox, R. Griffith, A.D. Joseph, R.H. Katz, A.
Konwinski, G. Lee, D.A. Patterson, A. Rabkin, I. Stoica, and M.
Zaharia. A view of cloud computing. Communications of the ACM,
53(4):50–58. ACM Press, Apr 2010.

[6] Amazon simple storage service (Amazon S3).
http://aws.amazon.com/ s3/.

[7] M. Bellare, D. Pointcheval, and P. Rogaway. Authenticated key ex-
change secure against dictionary attacks. In Advances in Cryptology
– Proceedings of EUROCRYPT, pages 139–155. Springer LNCS
1807, May 2000.

[8] D. Boneh, C. Gentry, and B. Waters. Collusion resistant
broadcast encryption with short ciphertexts and private keys. In
Advances in Cryptology – Proceedings of CRYPTO, pages 258–
275. Springer LNCS 3621, Aug 2005.

[9] B. Callaghan, B. Pawlowski, and P. Staubach. NFS
version 3 protocol specification. The Internet Engineering
Task Force (IETF), RFC 1813, Jun 1995.

[10] R. Canetti and H. Krawczyk. Analysis of key-exchange protocolsd
their use for building secure channels. In Advances in Cryptology
– Proceedings of EUROCRYPT, pages 453–474. Springer LNCS
2045, May 2001.

[11] CloudStore. http://gcloud.civilservice.gov.uk/cloudstore/.
[12] Crypto++ 5.6.0 Benchmarks.

http://www.cryptopp.com/benchmarks. html.
[13] J. Dean and S. Ghemawat. MapReduce: Simplified data

processing on large clusters. In Proceedings of the 6th
Symposium on Operating System Design and Implementation
(OSDI), pages 137–150. USENIX Association, Dec 2004.

[14] M. Eisler. LIPKEY - A Low Infrastructure Public Key mechanism
using SPKM. The Internet Engineering Task Force (IETF), RFC
2847, Jun 2000.

[15] M. Eisler. XDR: External data representation standard. The Internet
Engineering Task Force (IETF), STD 67, RFC 4506, May 2006.

[16] M. Eisler. RPCSEC GSS version 2. The Internet Engineering
Task Force (IETF), RFC 5403, Feb 2009.

[17] M. Eisler, A. Chiu, and L. Ling. RPCSEC GSS protocol specification.
The Internet Engineering Task Force (IETF), RFC 2203, Sep 1997.

[18] S. Emery. Kerberos version 5 Generic Security Service Application
Program Interface (GSS-API) channel binding hash agility. The
Internet Engineering Task Force (IETF), RFC 6542, Mar 2012.

[19] M. Factor, D. Nagle, D. Naor, E. Riedel, and J. Satran. The OSD
security protocol. In Proceedings of the 3rd IEEE International
Security in Storage Workshop (SISW), pages 29–39. IEEE
Computer Society, Dec 2005.

[20] Financial Services Grid Initiative. http://www.fsgrid.com/.
[21] S. Ghemawat, H. Gobioff, and S. Leung. The Google file system.

In Proceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP), pages 29–43. ACM Press, Oct 2003.

[22] G.A. Gibson, D.F. Nagle, K. Amiri, J. Butler, F.W. Chang, H. Go-
bioff, C. Hardin, E. Riedel, D. Rochberg, and J. Zelenka. A cost-
effective, high-bandwidth storage architecture. ACM SIGPLAN
Notices, 33(11):92–103. ACM Press, Nov 1998.

[23] Hadoop Wiki. http://wiki.apache.org/hadoop/PoweredBy.
[24] J.H. Howard, M.L. Kazar, S.G. Menees, D.A. Nichols, M. Satya-

narayanan, R.N. Sidebotham, and M.J. West. Scale and
performance in a distributed file system. ACM Transactions on
Computer Systems (TOCS), 6(1):51–81. ACM Press, Feb 1988.

[25] F. Hupfeld, T. Cortes, B. Kolbeck, J. Stender, E. Focht, M. Hess, J. Malo,
J. Marti, and E. Cesario. The XtreemFS architecture – a case for object-
based file systems in grids. Concurrency and Computation: Practice and
Experience (CCPE), 20(17):2049–2060. Wiley, Dec 2008.

[26] Hadoop distributed file system. http://hadoop.apache.org/hdfs/.
[27] J. Kubiatowicz, D. Bindel, Y. Chen, S.E. Czerwinski, P.R. Eaton,

D. Geels, R. Gummadi, S.C. Rhea, H. Weatherspoon, W. Weimer,
C. Wells, and B.Y. Zhao. OceanStore: An architecture for global-scale
persistent storage. In Proceedings of the 9th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 190–201. ACM Press, Nov 2000.

[28] S. Langella, S. Hastings, S. Oster, T. Pan, A. Sharma, J. Permar,
D. Ervin, B.B. Cambazoglu, T.M. Kurc¸, and J.H. Saltz. Model formu-
lation: Sharing data and analytical resources securely in a biomedical
research grid environment. Journal of the American Medical
Informatics Association (JAMIA), 15(3):363–373. BMJ, May 2008.

[29] A.W. Leung and E.L. Miller. Scalable security for large, high
perfor-mance storage systems. In Proceedings of the ACM
Workshop on Storage Security and Survivability (StorageSS),
pages 29–40. ACM Press, Oct 2006.

[30] A.W. Leung, E.L. Miller, and S. Jones. Scalable security for
petascale parallel file systems. In Proceedings of the ACM/IEEE
Conference on High Performance Networking and Computing
(SC), page 16. ACM Press, Nov 2007.

[31] H.W. Lim. Key management for large-scale distributed storage systems. In

Proceedings of the 6th European Public Key Infrastructure Workshop
(EuroPKI), pages 99–113. Springer LNCS 6391, Sep 2010.

[32] J. Linn. The Kerberos version 5 GSS-API mechanism. The
Internet Engineering Task Force (IETF), RFC 1964, Jun 1996.

[33] J. Linn. Generic security service application program interface
version 2, update 1. The Internet Engineering Task Force (IETF),
RFC 2743, Jan 2000.

[34] Libris Financial. http://www.librisfinancial.com/stratolibris.html.
[35] Lustre. http://www.lustre.org.

http://www.jetir.org/

© 2018 JETIR September 2018, Volume 5, Issue 9 www.jetir.org (ISSN-2349-5162)

JETIRE006031 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 197

http://www.jetir.org/

